YALLA

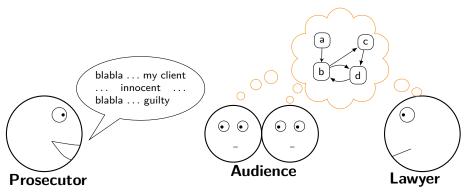
Yet Another Logic Language for Argumentation

Pierre Bisquert, Claudette Cayrol, Florence Dupin de Saint-Cyr, Marie-Christine Lagasquie-Schiex

INRA & IRIT, France

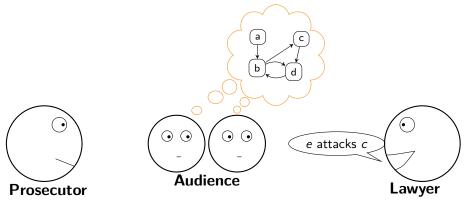
2nd Madeira Workshop on Belief Revision and Argumentation February 9th-13th 2015

A Lawyer During a Trial

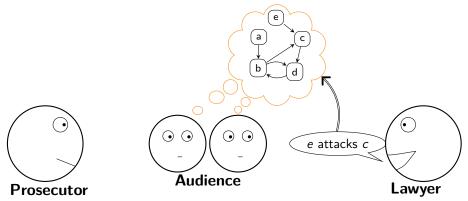


- A lawyer (the agent) is going to make her final address to an audience (the target).
- She knows (approximatively) the argumentation system (AS) of the target.

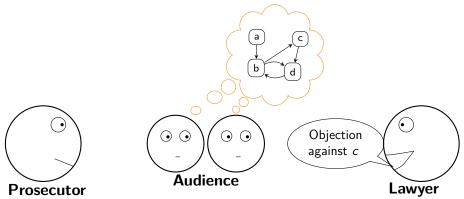
P. Bisquert



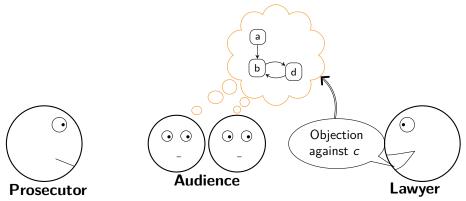
- She wants to force the audience to accept specific arguments.
- She has to make a change to the target AS:



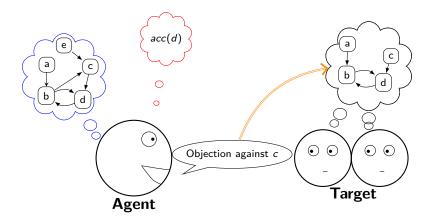
- She wants to force the audience to accept specific arguments.
- She has to make a change to the target AS:
 - by adding an argument



- She wants to force the audience to accept specific arguments.
- She has to make a change to the target AS:
 - by adding an argument
 - or by doing an objection about an argument (to remove it).



- She wants to force the audience to accept specific arguments.
- She has to make a change to the target AS:
 - by adding an argument
 - or by doing an objection about an argument (to remove it).



- Agent:
 - has a private argumentation system (her knowledge)
 - has a goal w.r.t. the target
 - should respect some constraints
 - \Rightarrow notion of executable operation

Outline

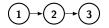
YALLA and Abstract Argumentation Dung Framework Semantics

2 YALLA and Argumentation Dynamics

3 Concluding Remarks

Dung framework

- According to Dung, an **abstract argumentation system** is a pair (A, R), where :
 - A is a finite nonempty set of arguments and
 - \mathcal{R} is a binary relation on \mathcal{A} , called *attack relation*
- $\bullet\,$ This system can be represented by a graph denoted ${\cal G}$



Dung framework

- According to Dung, an abstract argumentation system is a pair (A, R), where :
 - A is a finite nonempty set of arguments and
 - \mathcal{R} is a binary relation on \mathcal{A} , called *attack relation*
- $\bullet\,$ This system can be represented by a graph denoted ${\cal G}$

- YALLA: a term is a set of arguments
 - $singl({1}) \land singl({2}) \land singl({3}) \land ({1} \rhd {2}) \land ({2} \rhd {3})$

A universe $(\mathcal{A}_U, \mathcal{R}_U)$ = all arguments and their interactions.

() Mr. X is not guilty of the murder of Mrs. X

Universe

 \bigcirc

A universe $(\mathcal{A}_U, \mathcal{R}_U)$ = all arguments and their interactions.

- Mr. X is not guilty of the murder of Mrs. X
- Mr. X is guilty of the murder of Mrs. X

Universe

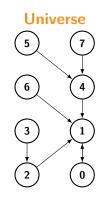
A universe $(\mathcal{A}_{U}, \mathcal{R}_{U})$ = all arguments and their interactions.

- Mr. X is not guilty of the murder of Mrs. X
- Mr. X is guilty of the murder of Mrs. X
- In X's business associate has sworn that he met him at the time of the murder.

Universe

A universe $(\mathcal{A}_{U}, \mathcal{R}_{U})$ = all arguments and their interactions.

- Mr. X is not guilty of the murder of Mrs. X
- Mr. X is guilty of the murder of Mrs. X
- Mr. X's business associate has sworn that he met him at the time of the murder.
- In X associate's testimony is suspicious due to their close working business relationship
- Mr. X loves his wife. A man who loves his wife cannot be her killer.
- Mr. X has a reputation for being promiscuous.
- Mr. X had no interest to kill Mrs. X, since he was not the beneficiary of her life insurance
- Mr. X is known to be venal and his "love" for a very rich woman could be only lure of profit.

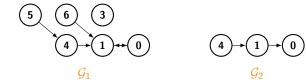


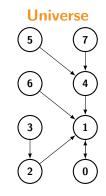
A universe $(\mathcal{A}_{U}, \mathcal{R}_{U})$ = all arguments and their interactions.

Definition (Argumentation graph)

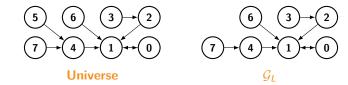
An argumentation graph G is a pair (A, \mathcal{R})

- $\mathcal{A} \subseteq \mathcal{A}_{U}$ arguments (finite)
- $\mathcal{R} \subseteq \mathcal{R}_{\mathsf{U}} \cap (\mathcal{A} \times \mathcal{A})$
- Γ = all argumentation graphs w.r.t. the universe.

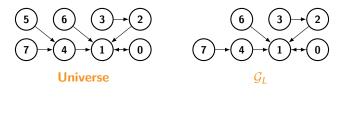




• Agent *L* knows some of the arguments of the universe $(\mathcal{G}_L \subseteq \Gamma)$:

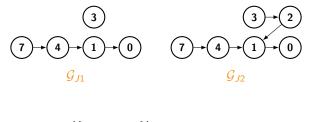


• Agent *L* knows some of the arguments of the universe $(\mathcal{G}_L \subseteq \Gamma)$:



$$\begin{array}{ccc} on(\{0,1,2,3,4,6,7\}) & \wedge & \neg(on(\{5\})) & \wedge \\ (\{1\} \rhd \{0\}) & \wedge & (\{4\} \rhd \{1\}) & \wedge & \dots & \wedge \\ \neg(\{5\} \rhd \{4\}) & & & \dots & \wedge \end{array}$$

• But *L* is not sure about the content of the jury's system. She hesitates between two graphs:



$$\begin{pmatrix} on(\{0,1,3,4,7\}) & \land \\ \neg(on(\{5\})) & \land & \neg(on(\{6\})) & \land & \dots & \land \\ (\neg(on(\{2\})) & \land & \neg(\{2\} \rhd \{1\}) & \land & \neg(\{3\} \rhd \{2\})) \\ & & \lor \\ (on(\{2\}) & \land & (\{2\} \rhd \{1\}) & \land & (\{3\} \rhd \{2\})) \end{pmatrix}$$

Outline

YALLA and Abstract Argumentation Dung Framework Semantics

2 YALLA and Argumentation Dynamics

3 Concluding Remarks

Semantics Criteria

 A set S is conflict-free iff there do not exist a, b ∈ S such that a attacks b

$$\blacktriangleright F(t) \iff on(t) \land (\neg(t \rhd t))$$

• S_1 defends each argument of S_2 iff each attacker of an argument of S_2 is attacked by an argument of S

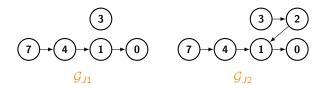
• $t_1 \implies t_2 \iff (\forall t_3 ((singl(t_3) \land (t_3 \vartriangleright t_2)) \implies (t_1 \vartriangleright t_3)))$

• S is an **admissible** set iff it is conflict-free and it defends all its elements

•
$$A(t) \iff (F(t) \land (t \implies t))$$

Acceptability Semantics

- \mathcal{E} is a **complete extension** iff \mathcal{E} is an admissible set and every acceptable argument wrt \mathcal{E} belongs to \mathcal{E}
 - $\blacktriangleright C(t) \iff (A(t) \land \forall t_2 \ ((singl(t2) \land (t \implies t_2)) \implies (t_2 \subseteq t)))$
- \mathcal{E} is the **only grounded extension** iff \mathcal{E} is the smallest complete extension
 - $G(t) \iff (C(t) \land \forall t_2 \ (C(t_2) \implies (t \subseteq t_2)))$



$$\begin{array}{ccc} on(\{0,1,3,4,7\}) & \land \\ \neg(on(\{5\})) & \land & \neg(on(\{6\})) & \land & \dots & \land \\ \{7\} \bowtie \{1\} & \land & G(\{1,3,7\}) \end{array}$$

Outline

1 YALLA and Abstract Argumentation

YALLA and Argumentation Dynamics

- Change in Argumentation
- Update Concepts Applied to Argumentation
- Specific Update Postulates

3 Concluding Remarks

Change in Argumentation

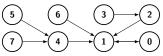
- ([Cayrol et al., 2010]): four elementary change operations.
 - adding/removing an argument with related attacks,
 - adding/removing an attack.
- Modification to handle multi-agents scenario

Change in Argumentation

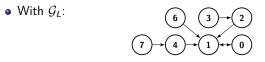
- ([Cayrol et al., 2010]): four elementary change operations.
 - adding/removing an argument with related attacks,
 - adding/removing an attack.
- Modification to handle multi-agents scenario

Executable Operations: Example

• Given the universe:



 $(\oplus, 2, \varnothing)$, $(\oplus, 4, \varnothing)$, $(\oplus, 5, \{(5, 4)\})$ and $(\oplus, 6, \{(6, 1)\})$ are elementary operations



 $(\oplus, 2, \emptyset)$, $(\oplus, 4, \emptyset)$ and $(\oplus, 6, \{(6, 1)\})$ are allowed for Agent *L* (arguments she knows).

• On the target \mathcal{G}_{J_1} : (3) (7)+(4)+(1)+(0)

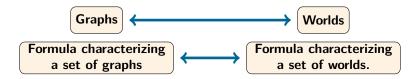
 $(\ominus, 4, \varnothing)$ and $(\oplus, 5, \{(5, 4)\})$ are executable by L on G_{J1} .

Parallel

- An agent may **act on** a target argumentation system
- An agent has a goal
- An agent has access to some transitions
 - \Rightarrow Close to **belief update**

Parallel

- An agent may act on a target argumentation system
- An agent has a goal
- An agent has access to some transitions
 - \Rightarrow Close to **belief update**



	Arg. Change	Update	
Initial knowledge:	Set of AS	Set of worlds	
Input:	Goal	New info	
Constraints:	Set of transitions (executable operations)	None (every update is achievable)	
P. Bisquert	YALLA	BRA 2015	17 /

38

Outline

1 YALLA and Abstract Argumentation

YALLA and Argumentation Dynamics

- Change in Argumentation
- Update Concepts Applied to Argumentation
- Specific Update Postulates

3 Concluding Remarks

Update Operator Related to Authorized Transitions

- Change in argumentation is close to authorized transitions in belief change
- ⇒ Belief update with authorized transitions
 - Modification of the belief update postulates to account for transition constraints
 - Introduction of a new representation theorem linking these postulates to a preorder on graphs

Preferences of the Lawyer

• The lawyer may have preferences over the transitions

▶ if
$$(G, G_i) \in T_+$$
 and $(G, G_j) \in T_-$, then $G_i \prec_G G_j$

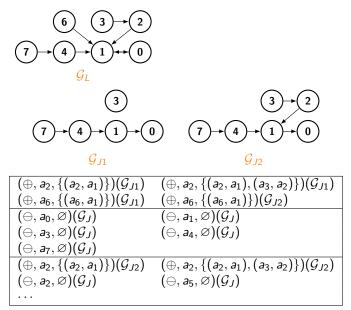
▶ else, if
$$(G, G_i) \in T_e$$
 and $(G, G_j) \notin T_e$, then $G_i \prec_G G_j$

Where

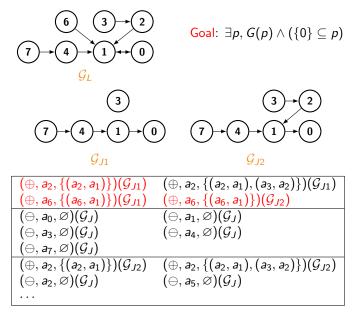
.

$$\begin{aligned} \mathcal{T}_{+} &= \left\{ \left(\mathcal{G}_{1}, \mathcal{G}_{2} \right) \middle| \begin{array}{l} \exists o \text{ such that } o \text{ is an addition executable on } \mathcal{G}_{1} \text{ and} \\ \mathcal{G}_{2} &= o(\mathcal{G}_{1}) \end{aligned} \right. \\ \mathcal{T}_{-} &= \left\{ \left(\mathcal{G}_{1}, \mathcal{G}_{2} \right) \middle| \begin{array}{l} \exists o \text{ such that } o \text{ is a removal executable on } \mathcal{G}_{1} \text{ and} \\ \mathcal{G}_{2} &= o(\mathcal{G}_{1}) \end{aligned} \right\} \\ \mathcal{T}_{e} &= \mathcal{T}_{+} \cup \mathcal{T}_{-} \end{aligned}$$

Preferences of the Lawyer



Preferences of the Lawyer



Outline

1 YALLA and Abstract Argumentation

YALLA and Argumentation Dynamics

- Change in Argumentation
- Update Concepts Applied to Argumentation
- Specific Update Postulates

3 Concluding Remarks

Change Characterizations

- A characterization gives **necessary and/or sufficient conditions** to obtain a particular goal, given
 - an operation type,
 - a semantics.

When adding an argument z under the grounded semantics, if z is not attacked by \mathcal{G} , z indirectly defends x and $x \notin \mathcal{E}$, then $x \in \mathcal{E}'$.

• If the conditions are met, then the conclusion is true on the system after the change.

Change Characterizations

- A characterization gives **necessary and/or sufficient conditions** to obtain a particular goal, given
 - an operation type,
 - a semantics.

When adding an argument z under the grounded semantics, if z is not attacked by \mathcal{G} , z indirectly defends x and $x \notin \mathcal{E}$, then $x \in \mathcal{E}'$.

• If the conditions are met, then the conclusion is true on the system after the change.

Change Characterizations

- A characterization gives **necessary and/or sufficient conditions** to obtain a particular goal, given
 - an operation type,
 - a semantics.

When adding an argument z under the grounded semantics, if z is not attacked by \mathcal{G} , z indirectly defends x and $x \notin \mathcal{E}$, then $x \in \mathcal{E}'$.

- If the conditions are met, then the conclusion is true on the system after the change.
- \Rightarrow Used to find a way to achieve the goal.

Specific Update Postulates

"When adding an argument z under the grounded semantics, if z is not attacked by G, z indirectly defends x and x ∉ E, then x ∈ E'."

 \Rightarrow Corresponding postulate:

let
$$\mathcal{G} = (\mathcal{A}, \mathcal{R}_{\mathcal{A}}) \text{ and } o = \langle \oplus, z, \mathcal{R}_z \rangle,$$

$$\begin{array}{ll} \text{if} \qquad \mathcal{G} \models G(p) \land singl(x) \land \neg(x \subseteq p) \text{ and } (\mathcal{G}, o(\mathcal{G})) \in \mathcal{T}_e \text{ and} \\ o(\mathcal{G}) \models (singl(z) \land \neg(\exists t \ on(t) \land (t \rhd z)) \land (z \triangleright \neg > x)) \end{array}$$

then
$$\mathcal{G} \diamondsuit_{\mathcal{T}} (on(z) \land \varphi_{\mathcal{R}_z}) \models G(p') \land (x \subseteq p').$$

Outline

1 YALLA and Abstract Argumentation

2 YALLA and Argumentation Dynamics

3 Concluding Remarks

Conclusion

• A unified view of dynamics in argumentation with

- a language (YALLA) that captures all the notions of abstract argumentation domain
- a set of postulates specific for argumentation dynamics
- Possibility to represent
 - the knowledge of an agent as an argumentation system and her goals
 - how she can interact with a target argumentation system (stage of a debate).

Future Works

- Relax the executability constraint
 - Adding an argument that is already present
 - Removing an argument that is not there
- Analyse the link between non elementary operations (simultaneously addition/removal of arguments) and a sequence of elementary operations
- Study the evolution of a private argumentation system with belief revision
 - An agent thinks that x is rejected and someone informs her that it is not the case
 - \rightarrow is there an argument that defends x?
 - \rightarrow is the attacker of x valid?

Future Works

- Relax the executability constraint
 - Adding an argument that is already present
 - Removing an argument that is not there
- Analyse the link between non elementary operations (simultaneously addition/removal of arguments) and a sequence of elementary operations
- Study the evolution of a private argumentation system with belief revision
 - An agent thinks that x is rejected and someone informs her that it is not the case
 - \rightarrow is there an argument that defends x?
 - \rightarrow is the attacker of x valid?
- Thank you!

References I

Cayrol, C., Dupin de Saint Cyr, F., and Lagasquie-Schiex, M.-C. (2010). Change in abstract argumentation frameworks: Adding an argument. *Journal of Artificial Intelligence Research*, 38:49–84.

Executable Operation I

$$(\mathcal{A}_U, \mathcal{R}_U) =$$
 universe, $k =$ agent, $\mathcal{G}_k = (\mathcal{A}_k, \mathcal{R}_k)$ her AS,
 $\mathcal{G} = (\mathcal{A}, \mathcal{R})$ any AS.

- elementary operation o = (op, x, att) op ∈ {⊕, ⊖}, x ∈ A_U, att ⊆ R_U and
 op = ⊕ : ∀(u, v) ∈ att, (u ≠ v) and (u = x or v = x)
 op = ⊖ : att = Ø
- (op, x, att) allowed for k iff $x \in A_k$ and $att \subseteq R_k$

Executable Operation II

 $(\mathcal{A}_{U}, \mathcal{R}_{U}) = universe, k = agent, \mathcal{G}_{k} = (\mathcal{A}_{k}, \mathcal{R}_{k})$ her AS, $\mathcal{G} = (\mathcal{A}, \mathcal{R})$ any AS.

• (*op*, *x*, *att*) executable by *k* on *G* iff:

▶ $op = \oplus$: $x \notin A$ and $\forall (u, v) \in att$, $(u \in A \text{ or } v \in A)$ ▶ $op = \ominus$: $x \in A$.

• o = (op, x, att) executable by k on \mathcal{G} provides a new system $\mathcal{G}' = o(\mathcal{G}) = (\mathcal{A}', \mathcal{R}')$:

•
$$op = \oplus : \mathcal{G}' = (\mathcal{A} \cup \{x\}, \mathcal{R} \cup \{att\})$$

►
$$op = \ominus$$
 : $G' = (A \setminus \{x\}, R \setminus \{(u, v) \in R | u = x \text{ or } v = x\})$

Signature and Structure

- Signature $\Sigma_{U} = (V_{const}, V_{f}, V_{P})$ where:
 - $V_{const} = \{c_{\perp}, c_1, \dots, c_p\} \ (p = 2^k 1),$ • $V_c = \{union^2\}$

$$V_P = \{on^1, \rhd^2, \subseteq^2\}.$$

- Structure $\mathcal{M} = (\mathcal{D}, \mathcal{I})$ of Σ_{U} , associated with $(\mathcal{A}, \mathcal{R})$, where $\mathcal{D} = 2^{\mathcal{A}_{U}}$ and \mathcal{I} associates:
 - a unique element of \mathcal{D} to each c_i
 - the union operator $(\mathcal{D}^2\mapsto\mathcal{D})$ to union
 - the characterization of the subsets of A to on (on(S) iff S ⊆ A)
 - the inclusion relation to \subseteq
 - the attack between sets of arguments
 (S₁RS₂ iff S₁ ⊆ A, S₂ ⊆ A and ∃x₁ ∈ S₁, x₂ ∈ S₂, (x₁Rx₂))
 to ▷

Axioms I

• Axioms for set inclusion

- $\forall x \ (c_{\perp} \subseteq x)$
- $\forall x \ (x \subseteq x)$
- $\flat \ \forall x, y, z \ ((x \subseteq y \land y \subseteq z) \implies x \subseteq z).$
- Axioms for set operator
 - $\flat \forall x, y \ ((x \subseteq union(x, y)))$
 - ► $\forall x, y \ ((y \subseteq union(x, y)))$
 - ► $\forall x, y, z \ (((x \subseteq z) \land (y \subseteq z)) \implies (union(x, y) \subseteq z)))$

Axioms II

• Axioms combining set-inclusion and attack relation

$$\forall x, y, z (((x \rhd y) \land (x \subseteq z)) \Longrightarrow (z \rhd y))$$

$$\blacktriangleright \forall x, y, z (((x \rhd y) \land (y \subseteq z)) \Longrightarrow (x \rhd z))$$

$$\forall x, y, z \ ((union(x, y) \rhd z) \implies ((x \rhd z) \lor (y \rhd z)))$$

$$\forall x, y, z \ ((x \vartriangleright union(y, z)) \implies ((x \rhd y) \lor (x \rhd z)))$$

- Axioms for the predicate on:
 - on(c_⊥)
 ∀x, y ((on(x) ∧ (y ⊆ x)) ⇒ on(y))
 - $\forall x, y \ ((on(x) \land on(y)) \implies on(union(x, y))$

$$\forall x, y \ ((x \rhd y) \implies (on(x) \land on(y)))$$

Useful Notations

• Let t_1 and t_2 be terms of YALLA_U. We define:

$$t_1 = t_2 \quad \stackrel{\mathsf{def}}{\equiv} \quad (t_1 \subseteq t_2) \land (t_2 \subseteq t_1)$$

$$t_1
eq t_2 \quad \stackrel{\mathsf{def}}{\equiv} \quad \neg(t_1 = t_2)$$

$$egin{aligned} {
m singl}(t_1) &\stackrel{
m def}{\equiv} & (t_1
eq c_ot) \wedge \ & orall t_2 \; (((t_2
eq c_ot) \wedge (t_2 \subseteq t_1)) \implies (t_1 \subseteq t_2)) \end{aligned}$$

Formulae Expressing Semantics Criteria

- Let \mathcal{A}_{U} be a set of arguments, and $(\mathcal{A}, \mathcal{R})$ an AS such that $\mathcal{A} \subseteq \mathcal{A}_{U}$ and $\mathcal{R} \subseteq \mathcal{A} \times \mathcal{A}$. Let t, t_{1}, t_{2}, t_{3} be terms of YALLA_U:
 - ► **Conflict-freeness**: *t* is conflict-free in $(\mathcal{A}, \mathcal{R})$ iff $(\mathcal{A}, \mathcal{R}) \models on(t) \land (\neg(t \triangleright t))$ $\implies F(t).$
 - ▶ **Defense**: t_1 defends each element of t_2 in $(\mathcal{A}, \mathcal{R})$ iff $(\mathcal{A}, \mathcal{R}) \models (\forall t_3 ((singl(t_3) \land (t_3 \triangleright t_2)) \implies (t_1 \triangleright t_3)))$ $\implies (\mathcal{A}, \mathcal{R}) \models t_1 \implies t_2$
 - ▶ Admissibility: *t* is admissible in $(\mathcal{A}, \mathcal{R})$ iff $(\mathcal{A}, \mathcal{R}) \models (F(t) \land (t \bowtie t))$ $\implies (\mathcal{A}, \mathcal{R}) \models A(t)$

Formulae Expressing Semantics

- ▶ **Complete**: *t* is a complete extension of $(\mathcal{A}, \mathcal{R})$ iff $(\mathcal{A}, \mathcal{R}) \models (\mathcal{A}(t) \land \forall t_2 ((singl(t2) \land (t \implies t_2)) \implies (t_2 \subseteq t)))$ $\implies (\mathcal{A}, \mathcal{R}) \models C(t).$
- ▶ **Grounded**: *t* is the grounded extension of $(\mathcal{A}, \mathcal{R})$ iff $(\mathcal{A}, \mathcal{R}) \models (\mathcal{C}(t) \land \forall t_2 \ (\mathcal{C}(t_2) \implies (t \subseteq t_2)))$ $\implies (\mathcal{A}, \mathcal{R}) \models \mathcal{G}(t).$
- ▶ **Stable**: *t* is a stable extension of $(\mathcal{A}, \mathcal{R})$ iff $(\mathcal{A}, \mathcal{R}) \models (F(t) \land \forall t_2 ((singl(t_2) \land \neg(t_2 \subseteq t)) \implies (t \triangleright t_2)))$ $\implies (\mathcal{A}, \mathcal{R}) \models S(t).$
- ▶ **Preferred**: *t* is a preferred extension of $(\mathcal{A}, \mathcal{R})$ iff $(\mathcal{A}, \mathcal{R}) \models (\mathcal{A}(t) \land \forall t_2 (((t_2 \neq t) \land (t \subseteq t_2)) \implies \neg \mathcal{A}(t_2)))$ $\implies (\mathcal{A}, \mathcal{R}) \models P(t).$

Postulates Respecting Transition Constraints

- $\checkmark \quad \mathbf{U1:} \ \varphi \diamondsuit_{\mathcal{T}} \alpha \models \alpha$
- $\sim \mathbf{U2:} \ \varphi \models \alpha \Rightarrow [\varphi \diamondsuit_{\mathcal{T}} \alpha] = [\varphi] \quad \text{(optional: inertia)}$
- ★ U3: $[\varphi] \neq \emptyset$ and $[\alpha] \neq \emptyset \Rightarrow [\varphi \diamond \alpha] \neq \emptyset$ (transition constraints)
 - $\Rightarrow \textbf{ E3: } [\varphi \diamondsuit_{\mathcal{T}} \alpha] \neq \emptyset \text{ iff } (\varphi, \alpha) \models \mathcal{T}$
- $\checkmark \quad \mathbf{U4:} \ [\varphi] = [\psi] \text{ and } [\alpha] = [\beta] \Rightarrow [\varphi \diamondsuit_{\mathcal{T}} \alpha] = [\psi \diamondsuit_{\mathcal{T}} \beta]$
- **X** U5: $(\varphi \diamond \alpha) \land \beta \models \varphi \diamond (\alpha \land \beta)$ (enforcement failure)
 - $\Rightarrow \text{ E5: if } card([\varphi]) = 1 \text{ then } (\varphi \Diamond_{\mathcal{T}} \alpha) \land \beta \models \varphi \Diamond_{\mathcal{T}} (\alpha \land \beta)$
- **X** U8: $[(\varphi \lor \psi) \diamond \alpha] = [(\varphi \diamond \alpha) \lor (\psi \diamond \alpha)]$ (enforcement failure)
 - $\Rightarrow \mathbf{E8} \text{ if } ([\varphi] \neq \varnothing \text{ and } [\varphi \Diamond_{\mathcal{T}} \alpha] = \varnothing) \text{ or } ([\psi] \neq \varnothing \text{ and } [\psi \Diamond_{\mathcal{T}} \alpha] = \varnothing) \\ \text{ then } [(\varphi \lor \psi) \Diamond_{\mathcal{T}} \alpha] = \varnothing \\ \text{ else } [(\varphi \lor \psi) \Diamond_{\mathcal{T}} \alpha] = [(\varphi \Diamond_{\mathcal{T}} \alpha) \lor (\psi \Diamond_{\mathcal{T}} \alpha)]$
- ✓ U9: if $card([\varphi]) = 1$ then $[(\varphi \diamondsuit_{\mathcal{T}} \alpha) \land \beta] \neq \emptyset \Rightarrow \varphi \diamondsuit_{\mathcal{T}} (\alpha \land \beta) \models (\varphi \diamondsuit_{\mathcal{T}} \alpha) \land \beta$

Representation Theorem

Assignment respecting *T*: ∀*G*₁, *G*₂ ∈ Γ
 if (*G*, *G*₁) ∈ *T* and (*G*, *G*₂) ∉ *T* then *G*₁ ≺_{*G*} *G*₂.

Theorem

 \exists an operator $\Diamond_{\mathcal{T}}$ satisfying (U1,) E3, U4, E5, E8, U9 iff \exists an assignment respecting \mathcal{T} s.t. $\forall \mathcal{G} \in \Gamma, \forall \varphi, \alpha \in \text{YALLA}_{U}$,

•
$$[\Phi_{\mathbf{U}}(\mathcal{G}) \diamondsuit_{\mathcal{T}} \alpha] = \begin{cases} \mathcal{G}_1 \in [\alpha] \text{ such that } (\mathcal{G}, \mathcal{G}_1) \in \mathcal{T} \text{ and} \\ (\forall \mathcal{G}_2 \in [\alpha] \text{ such that } (\mathcal{G}, \mathcal{G}_2) \in \mathcal{T}, \mathcal{G}_1 \preceq_{\mathcal{G}} \mathcal{G}_2) \end{cases}$$

• $[\varphi \diamondsuit_{\mathcal{T}} \alpha] = \emptyset$ if $\exists \mathcal{G} \in [\varphi]$ such that $[\Phi_{\mathbf{U}}(\mathcal{G}) \diamondsuit_{\mathcal{T}} \alpha] = \emptyset$

•
$$[\varphi \diamondsuit_{\mathcal{T}} \alpha] = \bigcup_{\mathcal{G} \in [\varphi]} [\Phi_{\mathsf{U}}(\mathcal{G}) \diamondsuit_{\mathcal{T}} \alpha]$$
 otherwise